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CHROMATIN STRUCTURE AND DNA DAMAGE RESPONSE
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Genomic integrity is constantly exposed to the products of metabolic activities and environmental processes that can induce DNA damage.
A well-organized network of signaling cascade, designated as DNA damage response (DDR), encompasses systems of damage detection,
cell-cycle check-point activation and repair mechanisms. The DNA damage pathways involve not only naked DNA strands but also higher-
order chromatin components, such as histone variants and heterochromatin proteins. Any impediment of this regulation process may cause
extensive damage and trigger the growth of tumours. The alterations in chromatin architecture occur during transcription and replication
and are required to provide the accessibility of proteins to DNA strands. There is increasing evidence that DNA repair is also accompanied
by the chromatin remodeling, particularly in the case of efficient detection and repair of DSBs where chromatin structure and nucleosome
organization represent a significant barrier.
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CTPYKTYPA XPOMATIMHA N OTBET HA IIOBPEXKAEHUE AHK

M.A. HOPMATOBA!

1 TaA>KUKCKIIT TOCYAapCTBEHHBIN MeAUIIMHCKIIT yHUBepcuTeT uM. AGyaan nbun Cuno, Aymrante, Pecriybanka Tagskukucran

[eHOMHas LeNoCTHOCTb NOCTOAHHO NOABEPraeTCA BO3AENCTBUIO MPOAYKTOB MeTaboiM3ma 1 NPOLLECCOB OKPY»KatoLLLEen Cpesbl, KOTOpble MOTYT
BbI3bIBaTb nospexaeHune JHK. Xopowo opraHn3oBaHHaA CeTb CUrHANbHOrO Kackaja, Ha3biBaemasa OTBeTOM Ha nospexaeHue AHK, oxsatbl-
BAEeT CUCTeMbl OBHapPYKeHWUA NOBPEXKAEHUN, MEXaHW3MbI aKTMBALMW U PEMOHTA KOHTPOJIbHbIX TOYEK KNETOYHOTO LUMKAa. MyTu penapauum
[OHK cBA3aHbl He TONbKO ¢ HUTAMK [HK, HO TaKKe C KOMNOHeHTaMK Hoiee BbICOKOTO NopALKa XPOMaTUHA, TAaKMMU KaK BapuaHTbl TMCTOHOB U
6es1ku retepoxpomaTrHa. /lloboe NpenATcTBME STOMY NPOLLECCY PETYIMPOBAHWUA MOXKET NPUBECTU K cepbé3HOMY nospexaeruto AHK v cnpo-
BOLMPOBATb POCT onyxosiei. MI3meHeHUs B apXMTEKTYpe XPOMaTUHA NMPOUCXOAAT BO BPEMA TPAHCKPUNLUN U pennKauumn n Heobxoammsl ans
obecneyeHnsa gOCTYNHOCTM 6enkoB K HUTam JHK. NMosasnseTcs Bcé 6oblue foKa3aTenbCTs TOro, YTo penapaumsa JHK Takke conpoBoxaaeTcs
pemoaennpoBaHuem XpomaTuHa, ocobeHHo B ciyyae 3pPeKTUBHOro 0OHapPYKEHUA U BOCCTAHOBEHUA ABYHWUTEBbIX pa3pbios OHK, rae
CTPYKTYpa XpOMaTWHa U 0praHM3aLma HyKJeoCoM NPeACTaBAAIOT 3Ha4YUTENbHbIV Bapbep.

Kntouesble cnosa: nospexdeHue [HK, xpomamuH, ATM, ATR, dsyHumessie paspsiesl JHK, omeemHas peakyus Ha nospexcoeHue AHK.

INTRODUCTION

The cellular environment is continuously being challenged
by the impact of endogenous factors, such as products of normal
metabolism, as well as during DNA replication, transcription, and
recombination, and exogenous or environmental factors, such as
exposure to UV radiation, ionizing radiation, and treatment by
various chemical agents [1]. All these factors often lead to the DNA
lesions that might contribute to the various outcomes. Firstly, DNA
damage might initiate malignant process; secondly, it is used to
cure cancer and, thirdly, it can contribute to side effects of cancer
treatment [2]. Depending on the challenge, different types of DNA
damage such as DNA base damage, single stranded DNA (ssDNA),
interstand crosslinking of DNA and DNA double-strand breaks (DSBs)
can occur. Thus, the genomic DNA of mammalian cells evolved
a robust genome surveillance system to maintain DNA integrity
through activation of alternative cell fate pathways [3].

DNA DAMAGE SIGNALING PATHWAY

Induced DNA damage initiates subsequent activation of the
signaling pathway known as the DNA damage response (DDR) that
represents a multistep process involving a network of DNA damage
response protein substrates [4]. Once DSB occurs, the sensor
substrates recognize and detect the DNA damage site with further
transmission of the DNA damage signal to the transducers, proteins
that promote activation of various protective pathways starting with
initiation of cell-cycle checkpoints, mechanisms that arrest the cell
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cycle division, followed by cell cycle arrest, DNA repair or apoptotic
programs via downstream effectors [5]. DDR is generated by trimetric
highly conserved MRN (MRE11-RAD50-NBS1) protein complex
that is involved in both modes of DSB repair, non-homologous
end joining (NHEJ) and homologous repair (HR) that requires the
undamaged homologues DNA template to restore the original DNA
sequence, and consequently restricted at S phase and G2 when the
sister chromatid is available. The initial stage of implication of MRN
complex in DSB happens due to nuclease activity and DNA binding
capability that belong to the MRE11 and is partially determined
by MRE11 and Rad interaction [5]. Nbsl protein is responsible for
nuclear localization and placement of the complex at the DSB site via
its direct interaction with protein histone variant H2AX. Furthermore,
the enrichment of MRN complex at the DSB ends promotes the
recruitment and activation of central DDR signaling protein kinase
Ataxia Telangiectasia Mutated (ATM) [4].

PIKK FAMILY MEMBERS

ATM and related kinases ATR (ATM and Rad3-related) and DNA-
PK (DNAdependent protein kinase) refer to phosphorylatidylinositol
3-kinase-like (PIKK) family of serine/threonine protein kinases, and
all are implicated in DNA DSB response pathways [4]. The members
of PIKK family possess noticeable similarities in the architectural
structure and share sequence homology, particularly in the following
domains such as C-terminal domain, flanking FAT (FRAP-ATM-
TRRAP) and FATC (FAT C-terminal) domains [6] (Figure 1-1) known
to be involved in the regulation of kinase activity. The N-terminal
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presents poorly conserved region among PIKK family members
and contributes to the protein-protein interaction with various
substrates [7].

Ataxia Telangiectasia Mutated (ATM) is one of the central kinases
that activated by formation of DNA DSBs. ATM molecule transforms
from inactive dimer into an active monomer by autophosphorylation
on Ser1981 as a result of DNA DSBs [9]. The recruitment of activated
ATM at sites of DNA DSBs occurs through its binding to C-terminus
of NBS1 of MRN complex. This interaction promotes further kinase
activity of ATM [10].

PROTEINS INVOLVED IN DNA DAMAGE REPAIR
PATHWAY

Following its recruitment at sites of DNA DSBs, activated ATM
protein kinase rapidly phosphorylates the histone variant H2AX
on Serine 139 (noted as yH2AX). Alteration of histone dynamics
in DNA repair is one of the crucial moments in DDR. DSBs induce
not only histone modifications but also lead to the histone variants
involvement in the DNA repair process. Thus, generation of yH2AX
foci amplifies the DNA damage signal and promotes further
recruitment of DDR proteins at the breakage sites. Accumulation of
YH2AX foci in the regions flanking the lesion serves as an indicator of
DSB presence and a marker for DDR activation [11].

This suggests that ATM kinase initiates a cascade of DDR factors
to provide effective DNA damage repair [12]. Moreover, activated
form of ATM exposes protective properties through regulation of cell
cycle. Thus, in response to the induction of DNA DSBs ATM triggers
activation of the G1/S cell cycle checkpoint and thus restrains cells
with damaged DNA from entering the S-phase. This defensive
mechanism is initially mediated through direct phosphorylation of
p53 on serine 15 by ATM kinase. Tumour suppressor protein p53
was reported as one of the first downstream substrates targeted
by ATM kinase. Additionally, stabilisation of p53 can be achieved
via phosphorylation of p53 on serine 20 by checkpoint kinase
(CHK2), another key target substrate of ATM. This phosphorylation
prevents p53 from Mdm2- mediated ubiquitination and degradation
[13]. Furthermore, ATM rescues p53 from degradation by direct
phosphorylation of Mdm2. The activated form of p53 accumulates
in the nucleus and acts as a transcription factor. As a result of this
function, p53 stimulates the expression of genes implicated in cell
cycle activity as well as several genes contributing to cell apoptosis
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kinase),
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[14]. Further contribution of ATM kinase to prevent the synthesis of
damaged DNA is fulfilled through its S-phase checkpoint functions.
Thus, phosphorylated by ATM CHK2 kinase lead to ubiquitination
and degradation of the S-phasepromoting phosphatase Cdc25A
which in adequate cellular microenvironment promotes S-phase
progression via activation of the cyclin-dependent kinase 2 (Cdk2)
that is required for DNA synthesis [15].

ROLE OF ATR KINASE

Alongside ATM, the ATR signaling pathway also takes part in
enforcement of the intra-S-phase checkpoint in the presence of
impaired replication fork. The pathway is governed primarily by ATR,
and may involve members of the Rad family of checkpoint proteins
as damage sensors and as scaffolds for the assembly of checkpoint
signaling complexes. The regulation of this pathway prevents
mitotic catastrophe that results from incomplete or inaccurate
DNA replication, and orchestrates high-fidelity DNA repair through
homologous recombination [16].

Similar to ATM, ATR refers to central kinases implicated in DDR.
However, unlike ATM, activation of ATR kinase is provoked by single
strand DNA (ssDNA) damage that occurs, for instance, at stalled
replication forks. Thus, interaction of ATRIP (ATR-interacting protein)
51 and the N-terminus of ATR induce activation and localization
of ATR kinase to damage sites. Once activated, ATR exerts its DNA
repair properties via recruitment of target substrates [17-19]. Many
of ATR functions are achieved through CHK1 kinase, the specific
ATR downstream substrate. Through CHK1- mediated degradation
of Cdc25A phosphatase ATR inhibits progression of DNA replication
thus ensuring sufficient time to resolve the stress condition [20-
22]. Moreover, ATR also regulates G2/M cell cycle checkpoint by
preventing mitotic entry in response to DNA damage [23].

ATM AND ATR

Despite the differences in the activation of ATM and ATR
signaling pathways, they share the plethora of downstream target
substrates. Both kinases possess similar substrate specificity and
phosphorylate their target substrates on serine or threonine residues
that precede glutamine residues, termed as SQ/TQ-motifs [24]. It was
reported, that more than 700 ATM/ATR putative target substrates
have been identified as a result of a large scale proteomic study.
Therefore, the cellular functions of these protein kinases partially
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Helerochromatin

Figure 1-2: Alterations in heterochromatin architecture as a result of DNA DSBs.
Triplicate MRN complex recognizes and accumulates at the DNA DSBs sites
with further recruitment of ATM protein kinase. As a result of HP1la release
from H3K9me3 the vacant place is occupied by Tip60 and ATM complex that
promotes the involvement repair proteins. Acetylation of ATM by Tip60 leads
to the ubiquitination of ATM by RNF8 and RNF168 ubiquitin kinases and thus
contributes to the amplification of DNA damage signal [3].

overlap, and the failure of one pathway might be compensated
by other pathway [25]. ATM and ATR confer a range of biological
functions including cell survival, proliferation, differentiation,
metabolism and motility. Moreover, a significant body of research
suggests PIKK family members are linked to tumorigenesis and
refers these kinases as attractive putative targets for cancer therapy.
A functional interplay between ATM and ATR contribute to the
maintenance of genomic stability after DNA damage by regulating
cell cycle progression and DNA repair [17, 26]. Thus, ATM as a
known tumour suppressor gene is found mutated in a wide range of
human cancers such as breast, lung, colorectal and hematopoietic
cancers [27]. Initially, ATM was identified as a gene defective
in the autosomal recessive human hereditary disorder ataxia—
telangiectasia (A-T). This multisystem condition, caused by a defect
in ATM function, is characterized by oculocutaneous telangiectasia,
progressive cerebellar ataxia, immunodeficiency, radio-sensitivity
and predisposition to malignancies [28]. ATR-deficiency impedes
the viability of multicellular organisms [29]. Furthermore, it was
reported that ATR depletion in adult mice manifested in the defect
of tissue homeostasis as a result of restricted proliferation, whereas
ATR activity is essential to maintain the proper DNA replication for
all proliferating cells and thus to ensure genomic stability. ATM and
ATR-mediated DNA damage pathways encompass detection of DNA
lesions, repair mechanisms, cell-cycle check point induction and
apoptosis. However, for fulfillment the above mentioned functions
it is important to consider the complexity of chromatin structure. It
is noteworthy, that sensitivity of DNA to damage and the kinetics of
repair can be determined by chromatin density [30].

IMPACT OF CHROMATIN STRUCTURE ON DNA
DAMAGE RESPONSE
As genomic material is presented by nucleo-protein complex,

consequently DNA template and proteins involved in its compaction
process are implicated in DNA damage response pathways [3].
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The interest in the correlation between DNA DSB induction and
alterations in chromatin structure was observed throughout the
decades. DNA double-strand break (DNA DSB) refers to one of the
most deleterious types of DNA lesions with destruction of both
strands of DNA molecule [31]. The failure of DSB lesion repair can
lead to translocations, inversions, deletions and chromosomal
abnormal rearrangements. All these alterations might lead to
accumulation of the vitally dangerous mutations or promote the
process of tumorigenesis.

Topological organization of chromatin has impact on all nuclear
processes, including DNA damage response. Thus, the difference
in chromatin compaction in euchromatin and heterochromatin
reflects on the both damage sensitivity and repair. Heterochromatin
decondensation is crucial for inducement of DNA damage signal
amplification as well as for provision of access for DNA repair proteins
to the breakage sites [32]. Thus, manipulation of chromatin structure
dictated by ATP-dependent chromatin remodeling complexes and
histone-modifying enzymes is involved in any DNA repair process to
allow access to DNA. Heterochromatin condensation impedes the
DNA repair, and as a result heterochromatic double strand breaks
(DSBs) recover with slower kinetics and less efficiency compare with
euchromatic DSBs [4].

CHROMATIN COMPLEXITY AND DNA DAMAGE
RESPONSE

It was demonstrated that hetero-chromatization is the principal
criteria of ATM involvement, and implication of ATM in DNA damage
responseis determined by chromatin complexity rather than by damage
complexity. Thus £25% of DSBs require ATM-signaling for repair where
ATM kinase facilitates DSB repair by affecting the heterochromatin—
building components such as KAP-1, HP1a, and/or Tip60 (Figure 1-2)
(Kurz and LeesMiller, 2004). Recent studies demonstrate that HP1a
has a dual role in DDR. Thus, phosphorylated HP1a by casein kinase
2 (CK2) temporarily removes HPla from H3K9me3 leading to the
heterochromatin de-condensation and providing access to DNA repair
proteins [3]. As a result of HP1a release from heterochromatin, the
space vacated by H3K9me3 is occupied by complex of Tip60 and ATM
that gains activation and initiates DDR by further phosphorylation of
downstream substrates [3].

Alternatively, it was reported that chromo-shadow domain
determines the recruitment of HP1a to the DSBs sites and provides
accumulation of HP1a at the sites of heterochromatic perturbation
by amplifying DNA damage signal whereas chromodomain and
H3K9me3 participates in the disassociation of HP1a and promotes
the chromatin decondensation [3]. Moreover, enrichment of HP1a
at pericentric heterochromatin provides stabilization and integrity of
sister chromatids as well serves as recognition site for mediators of
the DNA damage response pathway. Thus, bimodal behavior of HP1a
atthe DNA DSBs sites is recognized as a crucial mediator of chromatin
relaxation and at the same time participates in the maintenance of
genomic stability and is important factor for the completion of DNA
repair [3]. Experimental evidence demonstrated that chromatin
relaxation is partially determined by ATM-mediated phosphorylation
of transcriptional repressor 56 KAP1 (KRAB-associated protein;
TIF1b; TRIM28). KAP1 is an abundant nuclear protein that binds
in a sequence-dependent manner to KRAB domains to contribute
to the heterochromatin construction through association with
heterochromatin-building factors such as HP1, histone deacetylases
(HDACs), SET-domain histone methyltransferases, and ATP-
dependent chromatin remodelers [4]. ATM-KAP1 association for
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chromatin decondensation is required during G2 phase as well as GO/
G1 cells for efficient DSB repair. However, heterochromatic DSB repair
during DNA replication was demonstrated to be ATR-dependent.
Therefore, the phosphorylation of KAP1 during this phase of cell
cycle is mediated by ATR kinase. More recently, it was reported that
mutation or deletion of heterochromatin-related factors (KAP-1,
HP1, HDAC1/2, and Suv39H1/2) impedes the function of ATM kinase
in DNA repair [4]. This data demonstrates the specificity of ATM
to induce chromatin relaxation within heterochromatic DSBs [4].
Alongside the contribution to the enhanced DNA damage signalling
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and more efficient repair, the role of heterochromatin proteins is
also directed on reestablishment of chromatin structure following
DNA damage. According to the recent reports, the deletion of KAP1
led to the increased DNA sensitivity thus highlighting the function of
the protein in the maintenance of the genomic stability [4]. Hence,
through regulation of the transcriptional machinery access to the
DNA strands and modulation of dynamic chromatin architecture,
chromatin-associated proteins orchestrate a range of critical
cellular events including DNA repair and a promotion of malignant
transformation and progression [3].
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